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Abstract

Anisotropic finite VBO given in Part I is used to model monotonic and cyclic Swift effects. The simulations were

performed for fixed and deformation induced anisotropy. In the case of fixed anisotropy, it is assumed that the material

is orthotropic. Material investigated at the fixed anisotropy is rolled copper. In the case of deformation induced

anisotropy, the behavior of 70:30 brass under free-end torsion is investigated. The material is chosen as isotropic in the

beginning of the deformation and allowed to evolve under large shear deformation. The simulation results are com-

pared with experimental data obtained by Swift [Engineering 163 (1947) 253]. The Jaumann rate and the logarithmic

rate are chosen as objective rates in the simulations. It is shown that anisotropic finite VBO can reproduce the

monotonic and cyclic Swift effect quantitatively.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Axial length changes observed under free-end torsion of tubular or solid specimens are called the Swift

effect, named after Swift (1947). Experiments, see Swift (1947), Billington (1976), Montheillet et al. (1985)

and Wu et al. (1998), have shown that axial elongation induced under free-end torsion and axial stress build

up under fixed end torsion result from deformation induced anisotropy. Therefore, in the constitutive

model development, free-end and fixed end torsion tests have been used extensively to investigate modeling

capability of the anisotropic models, Lowe and Lipkin (1991), Kuroda (1997, 1999), Krempl (1994), Majors
and Krempl (1994) and Van der Giessen et al. (1992) just named a few.
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In Part I, isotropic finite viscoplasticity theory based on overstress is extended to anisotropy by intro-

ducing an anisotropic flow law with a fourth order inelastic compliance tensor. Inelastic compliance tensor

is allowed to evolve during inelastic deformation.

In this paper, Part II, the modeling capability of anisotropic finite VBO has been investigated for free-
end torsion. The evolution equations of anisotropic FVBO is given in Box I.
Box I. Anisotropic finite viscoplasticity theory based on overstress
The anisotropic flow law

D ¼ De þDin; Din ¼ D
in

C
R : O; O ¼ r�G

Evolution equation for inelastic compliance tensor, R

�R ¼ D
in
b½�e�ðR� TÞ; T ¼ ðRo : vÞ � ðRo : vÞ; v ¼ 1

C
R : O

�Rijkl ¼ _Rijkl þ RmjklXmi þ RimklXmj þ RijmlXmk þ RijkmXml

Incompressibility condition,

Riikl ¼ Rklii ¼ 0

Hypoelastic relation between Cauchy stress rate and rate of deformation tensor

De ¼ D

Dt
ðSrÞ; �r ¼ _rþ rX�Xr

The evolution equation for the equilibrium stress

�G ¼ W½C�
E

�r

�
þ r�G

k½C� � C
k½C�

G� K

Aþ bC

� ��
þ 1

�
�W½C�

E

�
�K

The evolution equation for the kinematic stress

�K ¼ Et

k½C� ðr�GÞ

The isotropic stress

_A ¼ AcðAf � AÞDin

Invariants:

D
in ¼ C

Kok½C�
; C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR : OÞ : ðR : OÞ

p

The theory is applied to free-end torsion using the logarithmic and the Jaumann stress rates. To this end
the coupled, nonlinear, first order, ordinary differential equations are numerically integrated in the simu-

lation of the test conditions reported by Swift (1947). The FVBO theory with fixed anisotropy as well as the

initially isotropic FVBO but changing to an anisotropic theory can represent the monotonic and the cyclic

Swift effect.
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2. Numerical results

2.1. Kinematics

The free-end torsion problem, which will be analyzed here, is shown in Fig. 1. A thin walled tube

subjected to free-end torsion has the following deformation, Zidi (2000).
r ¼ rðRÞ; h ¼ Hþ xZ; z ¼ eZ ð1Þ

where (R;H; Z) and (r; h; z) are initial (undeformed) and current (deformed) positions of a particle in

cylindrical coordinate system, where x is the twist angle per unit undeformed length.

Deformation gradient tensor, F:
F ¼

or
oR

1
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r oh
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The velocity gradient tensor, L ¼ _FF�1, is obtained as follows:
L ¼

o_r
or 0 0

0 _r
r

_xr
e

0 0 _e
e

2
664

3
775 ð3Þ
The rate of deformation tensor D, which is symmetric part of velocity gradient tensor, L and the spin

tensor, W the skew part of L, are:
D ¼ 1

2
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Fig. 1. Free-end torsion of a thin-walled tubular specimen.
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2.2. Stresses and objectivity

Two corotational objective rates, which are the logarithmic rate, the Jaumann rate are employed in the

analyses. An objective rate of the Cauchy stress is defined as
�r ¼ _rþ rX�Xr ð6Þ

where X is a suitable skew-symmetric spin tensor. The Jaumann rate is obtained by replacing X with the

plastic spin W.

Recently, Xiao et al. (1997) proved that the logarithmic rate of the Eulerian logarithmic strain measure,

lnV, is equal to the rate of deformation tensor, D. Among the co-rotational rates, this pair is the only one
that has this property. They introduced a new spin tensor called logarithmic spin, or simply log spin. The

logarithmic spin tensor X ¼ Xlog is given by
Xlog ¼ WþNlog ð7Þ

and
Nlog ¼
0; b1 ¼ b2 ¼ b3
m½BD�; b1 6¼ b2 ¼ b3
m1½BD� þ m2½B2D� þ m3½B2DB�; b1 6¼ b2 6¼ b3

8<
: ð8Þ
where
m ¼ 1

b1 � b2

1þ ðb1=b2Þ
1� ðb1=b2Þ

�
þ 2

lnðb1=b2Þ

�
ð9Þ
and bi are the eigenvalues of left Cauchy–Green tensor B ¼ FFT.
mk ¼ � 1

D

X3

i¼1

ð�biÞ3�k 1þ ei
1� ei

�
þ 2

ln ei

�
; k ¼ 1; 2; 3 ð10Þ

e1 ¼ b2=b3; e2 ¼ b3=b1; e3 ¼ b1=b2 ð11Þ

D ¼ ðb1 � b2Þðb2 � b3Þðb3 � b1Þ ð12Þ

The following notation is used:
½BrDBs� ¼ BrDBs � BsDBr; ½BrD� ¼ BrD�DBr

½BD� ¼ BD�DB; r; s ¼ 0; 1; 2
ð13Þ
The Cauchy stress tensor under free-end torsion is given as follows,
½r�rhz ¼
0 0 0

0 0 rhz

0 rhz 0

2
4

3
5 ð14Þ
To satisfy stress boundary conditions at rest, the equilibrium and kinematic stress tensors should have the
same non-zero components as the Cauchy stress tensor.
G ¼
0 0 0

0 0 Ghz

0 Ghz 0

2
4

3
5; K ¼

0 0 0

0 0 Khz

0 Khz 0

2
4

3
5 ð15Þ
The simulations were performed for fixed anisotropy and deformation induced anisotropy. In the case of

fixed anisotropy, it is assumed that the material is orthotropic. Material investigated at the fixed anisotropy
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is rolled copper. In the case of deformation induced anisotropy, the behavior of 70:30 brass is investigated.

The material is chosen as isotropic in the beginning of the deformation and allowed to evolve under large

shear deformation. The simulation results are compared with experimental data obtained by Swift (1947).

The Jaumann rate and the logarithmic rate, see Xiao et al. (1997), are chosen as the objective rates.

2.3. Fixed anisotropy

Constant inelastic compliance tensor, R is used for simulating fixed anisotropy. It is assumed that

material is orthotropic. The orthotropic materials have mechanical properties that are different in three

mutually perpendicular directions. They have three mutually perpendicular planes of material symmetry. In

this case, the number of independent elastic constants is reduced to 9. Elastic compliance tensor, C in the

six-dimensional space, see Lai et al. (1993), can be written as,
C ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C55 0

0 0 0 0 0 2C66

2
66666664

3
77777775

ð16Þ
The inverse of C can be defined in terms of the engineering constants as follows, Lai et al. (1993)
C�1 ¼

1
E11

�m12
E11

�m13
E11

0 0 0
�m12
E11

1
E22
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E22

0 0 0
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E11
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E22

1
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0 0 0

0 0 0 1
2l23

0 0

0 0 0 0 1
2l13

0

0 0 0 0 0 1
2l12

2
6666666664

3
7777777775

ð17Þ
where E11, E22 and E33 are Young moduli, m12, m13 and m23 are the Poisson’s ratios and l12, l13 and l23 are the

shear moduli. The inelastic compliance tensor, R can be written in the six-dimensional space as follows,
R ¼ Ko

1
K11

�g12
K11

�g13
K11

0 0 0

�g12
K11

1
K22

�g23
K22

0 0 0

�g13
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�g23
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1
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0 0 0

0 0 0 1
2K23

0 0

0 0 0 0 1
2K13

0

0 0 0 0 0 1
2K12

2
66666666664

3
77777777775

ð18Þ
where Ko and Kij are viscosity factors with the dimension of stress. g12, g13 and g23 are the inelastic Poisson’s
ratios without dimension.

The behavior of rolled copper under free-end torsion is investigated. Elastic constants of copper are

obtained from Tome (1998). The following assumption is made to calculate the inelastic Poisson’s ratios:

change in the inelastic Poisson’s ratios from cubic to orthotropy is assumed to be the same as the change in

the elastic Poisson’s ratios. Elastic constants of randomly distributed copper, which are C11 ¼ C22 ¼ C33,
C12 ¼ C13 ¼ C23 and C44 ¼ C55 ¼ C66, are obtained from Tome (1998). Three independent engineering
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constants, the elastic modulus E, the Poisson’s ratio m and the shear modulus l, are calculated from the

elastic constants. Randomly distributed copper has cubic symmetry while rolled copper, which has texture,

is orthotropic. The orientation of principal axes of the orthotropic material coincides with the specimen

axes. Nine independent elastic constants of orthotropic copper were obtained again from Tome (1998) and
are used to determine the nine independent engineering constants which are the three Young’s moduli E11,

E22 and E33, the Poisson’s ratios m12, m13 and m23 and the shear moduli l12, l13 and l23. Then percentage

changes in the elastic Poisson’s ratios from cubic to orthotropy are calculated. Inelastic Poisson’s ratios,

g12, g13 and g23, are determined according to the assumption made above. The rest of the inelastic material

constants are determined from the inelastic incompressibility condition (Riikl ¼ Rklii ¼ 0) which leads to six

independent equations. Calculated material constants for orthotropic material are given in Table 1.

Fig. 2 shows the axial elongation versus shear strain under free-end torsion for the Jaumann and the

logarithmic rate. Simulations are performed at a shear strain rate of _c ¼ 1� 10�3 1/s. The logarithmic rate
gives less elongation than the Jaumann rate. Swift (1947) performed the free-end torsion experiments on

copper. All experiments on copper were performed on solid bars. It was observed that solid bars yield

approximately 3.7% elongation at a shear strain c ¼ 400%, see Fig. 12 of Swift (1947). Thin walled tubular

specimens are expected to lead to larger length change than the solid bars. Our simulation with the log-
Table 1

Material constants for fixed anisotropy

Elastic moduli E11 ¼ 123.13E3 MPa

E22 ¼ 127.86E3 MPa

E33 ¼ 118.9E3 MPa

l12 ¼ 22.65E3 MPa

l13 ¼ 25.2E3 MPa

l23 ¼ 23.9E3 MPa

Elastic Poisson’s ratios m12 ¼ 0:316

m13 ¼ 0:38

m23 ¼ 0:36

Et ¼ 1000 MPa

Inelastic moduli K11 ¼ 1231.3E3 MPa

K22 ¼ 1325.4E3 MPa

K33 ¼ 1173.5E3 MPa

K12 ¼ 427.5E3 MPa

K13 ¼ 376E3 MPa

K23 ¼ 434.17E3 MPa

Inelastic Poisson’s ratios g12 ¼ 0:44

g13 ¼ 0:56

g23 ¼ 0:52

Isotropic stress Ac ¼ 1

Ao ¼ 115 MPa

Af ¼ 160 MPa

Viscosity function k1 ¼ 3.142E5 s

k2 ¼ 60 MPa

k3 ¼ 21:98

Shape function C1 ¼ 3000 MPa

C2 ¼ 123500 MPa

C3 ¼ 0:11 MPa�1



Fig. 2. Axial elongation versus shear strain for orthotropic material (rolled copper) using the Jaumann rate and the logarithmic rate.

The material constants are given in Table 1.
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arithmic rate yields 5% elongation at shear strain c ¼ 400%. These results are in good agreement with
experiments.

2.4. Deformation induced anisotropy

It is well known that the microstructure of materials changes during large deformation. This changes

lead to the change of symmetry, initially isotropic materials can be orthotropic at the end of the loading.
The change in the material symmetry is accomplished by allowing the change of the inelastic compliance

tensor. It is assumed that elastic properties do not change during the deformation.

The behavior of 70:30 brass under free-end torsion is investigated using deformation induced anisotropic

finite VBO with the Jaumann and logarithmic rates. Simulations are performed at a shear strain rate of
_c ¼ 1� 10�3 1/s. At shear strain c ¼ 127%, the material is unloaded and reloaded until c ¼ �47%. In Fig. 3,

axial elongation versus shear strain is plotted for the Jaumann rate. Experimental data is obtained from
Fig. 3. Axial length change in cyclic free-end torsion by using anisotropic finite VBO with the Jaumann rate. Experimental data are

from Swift (1947). Material constants are given in Table 2.
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Swift (1947). Material constants are given in Table 2 and used in Figs. 3–7. These material constants are the

initial constants when the material is isotropic. The loading curve matches with experimental data quite

well. Upon the reversing of loading direction, elongation decreases and reaches a min value, then increases

again. Although unloading curve does not match experiment well, the value of elongation at the end of the
reloading is the same as in the experiment. Backtracking of shear strain versus elongation curve after

unloading is captured well. The corresponding hysteresis loop of 70:30 brass is depicted in Fig. 4. In

addition to Cauchy stress, the equilibrium and kinematic stress curves are also plotted.

The experiments made by Billington (1976) on iron showed that work hardening has not much effect on

the axial elongation of a tubular or solid bar specimen under free-end torsion. This was a contradiction to
Table 2

Initial isotropic material constants for the modeling of deformation induced anisotropy using anisotropic FVBO

Modulus E ¼ 105000 MPa

Et ¼ 100 MPa

K ¼ 105000 MPa

Ko ¼ 105000 MPa

The Poisson’s ratios g ¼ 0:5

m ¼ 0:3

Isotropic stress Ac ¼ 2

Ao ¼ 250 MPa

Af ¼ 600 MPa

Viscosity function k1 ¼ 6.142E5 s

k2 ¼ 150 MPa

k3 ¼ 12:98

Shape function C1 ¼ 7000 MPa

C2 ¼ 93500 MPa

C3 ¼ 0:11 MPa�1

b½�e� function b½�e� ¼ 0:51� 0:508 tanhð2�eÞ

Fig. 4. Hysteresis loop of 70:30 brass under free-end torsion by using anisotropic finite VBO with the Jaumann rate. Initial material

constants are given in Table 2.



Fig. 5. The effect of monotonic work hardening on axial elongation. The objective rate is the Jaumann rate. Initial material constants

are given in Table 2.

Fig. 6. The effect of b½�e� function on axial elongation. The objective rate is the Jaumann rate. Initial material constants are given in

Table 2.
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Swift’s statement. In this work, the effects of work hardening are investigated as well. When the tangent

modulus is increased by a factor of 10, unloading and reloading curve did not change at all, the axial

elongation increased somewhat at loading, see Fig. 5. It can be concluded that the work hardening does not

much affect the axial elongation under free-end torsion as Billington (1976) found out experimentally.
The rate of change in anisotropy is controlled by function b½�e� in the evolution equation of inelastic

compliance tensor, R. It is chosen as a positive decreasing function since the rate of the change of

anisotropy decreases during deformation, Rollett and Wright (1998). In Fig. 6, the effects of function b½�e�
are shown.

Torsion experiments performed on pure aluminum by Rollett and Wright (1998) have shown the irre-

versibility of texture development, see their Fig. 8. Torsional load is applied up to 350% shear strain, then

unloaded to zero strain. Three sets of pole figures show the initial texture, texture at a shear strain of 350%

and at zero strain, Fig. 8a of Rollett and Wright (1998). The relative amount of change in texture that is
observed during the deformation from the zero strain condition to 350% strain is considerably greater than



Fig. 7. The magnitude of inelastic compliance tensor versus shear strain. The objective rate is the Jaumann rate. Initial material

constants are given in Table 2.
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the change that occurs during unloading from 350% strain to zero strain. It is observed that the final texture

differs slightly from the texture at a shear strain of 350% and also from the initial state. This implies the

irreversibility of texture development. To investigate the irreversibility of texture and the magnitude of

changes in anisotropy during deformation, the magnitude of the inelastic compliance tensor is calculated

and plotted in Fig. 7. During loading, the change in the magnitude of the inelastic compliance tensor is
high, but then slows which is consistent with experimental observations, Rollett and Wright (1998). After

unloading, a small change in the magnitude of the inelastic compliance tensor is observed and at the end of

a full cycle, the magnitude of the inelastic compliance tensor is found to be somewhat different than at a

shear strain of 127%.

For another set of material constants, simulations were performed and axial elongation versus shear

strain is depicted in Fig. 8. In this simulation, apart from the material constants given in Table 2, only the

viscosity function and b½�e� function are changed. Used viscosity function constants are k1 ¼ 3.142E6 s,

k2 ¼ 240 MPa and k3 ¼ 6:98 and b½�e� ¼ 0:429� 0:427 tanhð2:3�eÞ. By increasing rate dependent effects,
almost perfect match in loading and unloading is obtained.
Fig. 8. Axial length change in cyclic free-end torsion by using anisotropic finite VBO with the Jaumann rate.



Fig. 9. Axial elongation versus shear strain for two different objective rates, the Jaumann and logarithmic rate. Initial material con-

stants are given in Table 2.

Fig. 10. Axial length change in cyclic free-end torsion. The objective rate is the logarithmic rate. Initial material constants are given in

Table 2. Only the function b½e� and the tangent modulus (Et ¼ 1000 MPa) are different from the material constants given in Table 2.
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Next simulations are performed with the logarithmic rate. Material constants given in Table 2 are used

in these simulations. Axial elongations versus shear strain for two different objective rates, the Jaumann

and the logarithmic rates, are depicted in Fig. 9. Logarithmic rate gives less elongation than that of the

Jaumann rate. In Fig. 10, the response of the logarithmic rate is given for another set of material constants.

All material constants are kept the same as Table 2 except for b½�e� and Et. Changes are

b½�e� ¼ 3:4� 3:39 tanhð3:2�eÞ, and Et ¼ 1000 MPa. A good match with experiment at reloading is obtained

with the logarithmic rate.
3. Discussions

The Swift effect is one of the so-called second order phenomena against which the predictive capabilities
of constitutive equations are tested. The static, or simply the Swift effect, is found with tubes or solid
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cylinders under severe torsion. Under these conditions an axial change in length is found. The first task is

then to ascertain whether the model can reproduce the axial strain versus shear number curve, the so-called

monotonic Swift effect. Upon reversal of the direction of shearing the curve forms a cusp so that the axial

strain reduces before it continues to increase again. The backtracking and the cusp are difficult to model.
The point of discussion is the influence of material symmetry on the modeling of the cyclic Swift effect.

Recently, Colak and Krempl (in press) used isotropic FVBO with various objective rates to examine the

large strain behavior of a hypothetical alloy close to 70:30 brass under free-end torsion. The limited

capability of isotropic formulations to model deformation induced anisotropy is demonstrated through

simulations. The unloading behavior for the free-end torsion cannot be reproduced quantitatively when the

isotropic formulation of FVBO is used with the appropriate spin. This result is expected, see Majors and

Krempl (1994), since the modeling of backtracking of the axial strain versus shear strain curves under free-

end torsion requires the repository for deformation induced anisotropy. It cannot be reproduced by for-
mulations using a backstress and appropriate spins alone (e.g. Van der Giessen et al., 1992; Voyiadjis and

Kattan, 1992). There appears to exist a consensus that anisotropy is a precondition for observing the Swift

effect. Therefore, the monotonic and cyclic Swift effect can be reproduced in this work when an anisotropic

model is used.
4. Conclusions

The isotropic finite VBO is extended to anisotropy. It is accomplished by introducing an inelastic

compliance tensor and allowing it to evolve with large deformation. The modeling capability of anisotropic

VBO was demonstrated for fixed and deformation induced anisotropy. First, the material behavior of

rolled copper, which has orthotropic symmetry, is investigated using fixed anisotropic finite VBO. Then, the

behavior of the 70:30 brass under free-end torsion is examined using deformation induced anisotropic VBO

with the Jaumann and the logarithmic rates. It is shown that monotonic and cyclic Swift effect can be

modeled quantitatively by anisotropic finite VBO, which allows the change of inelastic compliance tensor.

Change in the material symmetry during large deformation can be observed. Initially isotropic material can
become monoclinic or other type of anisotropy.
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